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Communications 

Line-Source Excitation for Maximum Aperture 
Efficiency with Given Sidelobe Level 

Abstracf-An unusual family of line-source aperture excitations 
are  described which provide. maximum aperture efficiency for a 
given sidelobe level. The emphasis is on the direct  description of 
the excitation functions. The simplicity of the new excitation pro- 
vides  insight into the  role of certain excitation components with 
respect to aperture utilization and sidelobe level. The proposed 
excitations are evaluated and are found to be comparable with 
the most efficient excitations previously described. 

I. IXTRODWCTIOX 

A basic and int.riguiig  problem which has  been of much interest 
to t,he antenna design engineer is the question of what one line- 
source  excitation yields maximum gain  or maximum aperture 
efficiency for a specified restriction on  the sidelobe level.‘ The 
author is not aware of any rigorous solution to this problem. This 
communication  presents a new viewpoint,; it  describes another 
family of excitations which, for  practical  purposes,  is a simple 
solution to  the problem. It differs from previous  approaches which 
concentrate on the  pattern  function; here the emphasis is on t.he 
descript.ion of the excitation  function  for  maximum aperture effi- 
ciency. It also differs by  virtue of its simplicity of formulation 
and computation. 

11. PROBLEM BACKGROUXD 

For  the purposes of this discussion, it is assumed t.hat. t,he line 
source is large  in t.erms of wavelengths and  that  the excitat,ion is 
equiphase (without  any reversals, so supergain effects are ex- 
cluded). Aperture efficiency is defined in accordance  with the [ll]: 

directivity for any excit.at,ion 
direct,ivit.y for  uniform  excitation LJf2(z) dx A E =  - I If(4 dx i z  - 

f(z) = line-source excitation (volt.age or current) 
L = length of line source. 

The objective is to maximize AE  with  the sidelobe level specified. 
The historical approach  to  the problem starts with  the work 

of Dolph [l]. He determined the line-source array excitat.ion 
coefficients for minimum  beamwidth with  all sidelobes a t  a given 
level. He related  these coefficients to  the Chebyshev polynomials. 

van  der Maas [a], [7], in attempt.ing  to simplify the calcu- 
lation of a Dolph-Chebyshev array of many elements, discovered, 
by a limiting process, the excit,ation funct.ion for  a  continuous  line 
aperture which has  minimum beamwidth for a given sidelobe level. 
Fig. l(a) shows this excit.ation and  the corresponding pattern 
function: Il(y) is a modified Bessel function of t,he fi& kind and 
of order one. It is noted that,, because an impulse is required a t  
each edge, the excitation  is unrealizable. (Campbell  [SI  published 
this Fourier-transform pair in 1928.) 

Taylor [SI, restricling himself to excitations which are  analytic 
everywhere  between the edges of a continuous aperture, modified 
the  pattern funct.ion to give sidelobes t.apering down beyond a 
specified number fi. Hansen [4] subsequently concluded t.hat. the 
proper selection of 7i for the Taylor  excitat,ions gives the highest 
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1 The  term  “sidelobe level” is used in the  Fcepted sense,  meaning 

the  level not  to be exceeded  by  any of the  sldelobes. In the Dolph- 
Chebyshev and van der Maas  formulation, this is the level of all  side- 
lobes. 
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Fig. 1. Excitation and pattern  funct.ions for minimum  beamwidth and 
maximum aperture efficiency. (a) van der Maas  limit  functions. 
(b) Proposed  (Wheeler)  excitation. 

XE for a given sidelobe level when compared with  other excitations 
known to him. Also, Kinsey [ 5 ]  recently  noted t.hat, for practical 
purposes, the selected Taylor excitations are  as good as can be 
achieved. 

111. PROPOSED EXCITATIONS 

Wheeler, in  privat.e discussions with  the  author  and  in his notes 
some years ago [lo], has described a different approach to the 
problem, which builds on the peculiarities of the excitation  function. 
He proposes a unique modification of the  van der Maas  limit func- 
t.ion, which is not. rest,ricted to  analytic functions  everywhere 
between the edges. Fig. l (b)  shows the basic concept. The  area of 
the impulse a t  each edge is retained but is redist.ributed, as shown, 
so that  the following results occur. 

1) The sidelobes do not. exceed the  same level, and  the  outer 
sidelobes taper down to  take less power. 

2) The  shape of the main  beam is approximately  preserved by 
also retaining  the second moment. of each edge puke  around  the 
aperture center. This is accomplished by locating the “center of 
gravity” of the  shaded  area a t  t.he end of the curve. (For a narrow 
p&e, a number of higher order moments are approximately  retained, 
so the near sidelobes are approximately  preserved.) 

3) The maximum aperture efficiency is approached by  setting  the 
height of the pulse near the average of t.he curve. ( I t  is reasoned 
that t,his pukeheight should  approach maximum efficiency, because 
any  departure from the average excit.ation increases the  total power 
without increasing the useful power density in  the beam direction.) 

In  Fig. l(b)  it is  noted that  the redist,ributed area  extends out- 
side of the initial aperture. Renormalization of the  aperture  width 
results  in  a  beamwidth  slightly greater t.han the  van  der  Maas 
minimum  beamwidth. This is simply the expected t.radeoff be- 
tween the minimum  beamwidth and maximum BE, corresponding 
to  the choice of T i  in Taylor’s  distribut.ion.  Fig.  2 shows the proposed 
family of excitations, normalized to  the  same  aperture  width. 
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Fig. 2. Proposed  excitat.ion  familv for maximum  aperture  efflciency 
wit.h  given  sidelobe  level. 

TABLE I 
CHARACTERISTICS OF VAN DER M A ~ S  LIMIT FUNCTIONS 

X 

0. I 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0. e 
0.9 
1.0 

r=SlDELOBE  LEVEL (VOLTAGE RATIO) I 
SIDELOBE LEVEL - d B  OF r 

b = anticosh ( I / r )  

2.412 

,9940 
.9763 
,9473 
,9077 
.e586 
,801 2 
,7369 
.6673 
,5942 
.5 190 

2.993 

I, ( b m )  

4.723  4.147  3.571 

f ,  ( X I  = JI-x2 I, (b) 

,9915 

, 1 2 5 2  ,1859  .2699 .3809 
,2043 .2729 .3603 ,4679 
.3006 .3721 .4574 .5565 
.4106 ,4794 .5574 .6440 
.5288  .5899 .6564 .7275 
.6482 .6978 ,7500 .8040 
.7610 ,7969 .E337 ,8709 
.E591  .a813 .9036 ,9257 
,9352 .9458  ,9562 ,9665 
,9835  ,9862  ,9889 

I 5.298 

,9247 
,8372 
.7263 
.60  I5 
.4732 
,3507 
,2417 
. I5 16 
,0827 

AVERAGE VALUE OF f ,  ( x )  = f /r  - I 

I (b l  

.a250 .5833 .6200 .6620 .7104 .7654 

IMPULSE FUNCTION AREA = 
I 

.I7842 ,005893 .011224  ,02162  ,04234 ,08502 
I I I I I 1 

Table I presents a tabulat.ion of the  van  der Maas excitation 
functions  and  the average  value of the continuous part of the 
excitations, which is the pulseheight in the proposed excitations. 

The proposed excitations have been evaluated  by numerical 
methods. The expression defining -4E as a ratio of integrals was 
evaluated  as a rat.io of sums. The height, of the pulse was set t.o 
the average  value of the curve as given in  Table I, and  the cent,er 
of gravit,y of t.he pulse was located at the position of the  van  der 
Maas impulse. The results of these simple calculations are given in 
the  next section.  Additional calculations have shown that a slight 
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Fig. 3. Comparisons of two forms of excitation intendecl  for maximum 
apert.ure eaciency with 30-dB sidelobe level. 
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Fig. 4. Aperture  efflciency  versus  sidelobe  level for Wheeler, Taylor. 
and cosine squared on pedestal  excitations. 
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advantage is obtained by choosing t.he pulseheight  somewhat below 
the average and sloping the pulse top downward from the edge of 
the apert.ure. 

Fig. 3 shows a comparison of t,he excitation obtained  by Kinsey 
[ 5 ]  for his highest .4E -4th a 30-dB sidelobe level and  the one 
proposed by Wheeler for the same sidelobe level. The  similarity 
over most of t,he apert.ure is remarkable, considering the laborious 
computations  required by one  in  contrast to the simple  computation 
of the ot,her. 

Iv. COhrPARISOS O F  EXCITATIONS. AND CONCLUSIONS 

Fig. 4 presents the values of aperture efficiency calculated for 
several sidelobe levels for the Wheeler excitations. The values 
presented are  for the simple  formula previously prescribed and do 
not include the slight advantage of a lower pulseheight and  tilted 
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top. For comparison, two other well-known excitations are included. 
The values  for t,he Taylor excitations ( i i  set for maximum aperture 
dciency)  were obtained  from [3] and [SI. The “cosine squared 
on a pedestal” excitations are simple and give efficiency wit,hin 
6 percent of the maximum for sidelobe levels down to 40 dB [SI. 

As shorn  in Fig. 4,  t.he Taylor  and Wheeler excitations provide, 
within the accuracy of the calculations and  plotting,  equal  aperture 
efficiencies. The practical dist,inctions between these t.wo functions 
are in their descript,ion and ease of calculation. The fi values for 
the  Taylor functions had to be determined  numerically and  have 
no simple rule  for approaching maximum aperture efficiency. The 
calculat,ion of the  Taylor excitat.ion curve involves a  summation of 
ii $- 1 terms; t,he Wheeler excitation  curve is given by one term 
plus the edge pulse. 

There remains to be uniquely  determined t,he excit.ation which 
will give the maximum aperture efficiency for a given sidelobe 
level. The formula proposed herein is close enough for  practical 
purposes and is the simplest yet  stated. It departs from t,he arti- 
ficial restriction of continuity everywhere between the edges, and 
this freedom may be found  essential to the  ultimate formulation. 
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Singular Integral Equation Solution for Electrically 
Small Short Cylindrical  Antenna 

Abstrucf-It is shown, that in the  case of the electrically small 
tubular cylindrical antenna whose  length-to-radius  ratio is 0(1) 
or smaller, that  the integral  equation involved readily reduces  to 
a simple ,singular equation, the solution of which is in terms of 
elementary functions. 

I. INTRODUC~OX 

When Maxnell’s equations are applied to  the case of a thin 
walled tubular perfectly conducting  cylindrical antenna,  one  result 
is an  integral equat.ion for the  current. It can  be shorn [l] that 
t.he integral equation for the  total  current  on  the t,ube is 

dl(z’)  d l, 1 dz’ dz 
I- - GO(z - 2’) + ko*l(z‘)Go(t - z ’ )  

l z l < h  (1) 

where 2h is the  antenna lengt,h, ko = WI&EO)I/*, and  time  variation 
is exp (id). F ( z )  represents t.he z component, of t.he total applied 
electric field on  the surface of t.he antenna. 

In  the  past, almost  all  solutions of (1) have  dealt  with  the  situa- 
t.ion, a << X, h >> a. I n  this case, t,he  logarithmically  singular be- 
havior of the kernel G&) as 1 z \ -+ 0 is not important., unless fine 
detail of the  current is required  near the ends of the  antenna or at 
concentrated sources on t.he surface of the  antenna. If the  other 
extreme where a >> h i considered, however, i t  is  found that t,he 
logarithmic  singularit,y is the  dominant feat.ure of Go(z) .  It is natural, 
therefore, that  the well-developed theory of singular integral equa- 
t.ions [2], [3] should be invoked  in this case. The result. is that when 
h << a << x, an  accurate closed-form solution of the  integral equat.ion 
can be  obtained.  Equally  important,, however, is the  fact  that  this 
result is the principal part. of the solut.ion for  thick antennas where 
a >> h and ajx is  large. 

Applications of t.his work mag be found  in  the design of small 
field probes where accurate  and simple  solutions are  required; 
in the analysis of thick antennas;  in  the  determination of the 
electric field  close to edges and feed apert.ures to  facilitate st,udies 
of microwave breakdoan,  and in graduate teaching courses where 
it. is desired to display t,he nature of the  current  distribution a t  
edges and sources in  a  simple and elegant manner. One case where 
t.he theory has been applied successfully is in  the design of a minia- 
ture probe  for  measuring differential and  transient soil moisture 
content. 

Thus  this communication  introduces singular integral equation 
theory to  the solution of the cylindrical antenna problem for those 
cases where the  antenna  length is short compared wit.h its radius. 

11. SOLUTIOX FOR CONCEKTRATED SOURCE 

Let. t.he antenna excitation be defined by 

E Z ( U  + 0,z)  = --6(z), Iz I < h ( 2 4  

E,(a - 0,z) = 0, IZI < h .  (2b) 

with  the corresponding physical model as shown in Fig. l(a)  and  the 
mat.hematica1 abstraction as shown in Fig. l(b).  Note  that,  the 
delta-function excitation  has to  be understood as part of a  mathe- 
mat.ical process whereby the finite aperture problem may be solved. 
X o x  t.he right-hand  side of (1) becomes 

F ( z )  = - - 
ZO 

(3 1 
7f-l 

.\raking the  substitutions 

koh = H 

koa = A 

z = h €  

h 
Sa 
- = R  
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