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Line-Source Excitation for Maximum Aperture
Efficiency with Given Sidelobe Level

Abstract—An unusual family of line-source aperture excitations
are described which provide. maximum aperture efficiency for a
given sidelobe level. The emphasis is on the direct description of
the excitation functions. The simplicity of the new excitation pro-
vides insight into the role of certain excitation components with
respect to aperture utilization and sidelobe level. The proposed
excitations are evaluated and are found to be comparable with
the most efficient excitations previously described.

1. INTRODUCTION

A basic and intriguing problem which has been of much interest
" to the antenna design engineer is the question of what one line-
source excitation ylelds maximum gain or maximum aperture
efficiency for a specified restriction on the sidelobe level.! The
author is not aware of any rigorous solution to this problem. This
communication presents a new viewpoint; it describes another
family of excitations which, for practical purposes, is & simple
solution to the problem. It differs from previous approaches which
concentrate on the pattern function; here the emphasis is on the
description of the excitation function for maximum aperture effi-
ciency. It also differs by virtue of its simplicity of formulation
and computation.

II. ProBLEM BACKGROUND

For the purposes of this discussion, it is assumed that the line
source is large in terms of wavelengths and that the excitation is
equiphase (without any reversals, so supergain effects are ex-
cluded). Aperture efficiency is defined in accordance with the [117:

_ directivity for any excitation _ | ffw) dz 2
" directivity for uniform excitation L{f*(z) dx
f(z) = line-source excitation (voltage or current)

L = length of line source.

The objective is to maximize AE with the sidelobe level specified.

The historical approach to the problem starts with the work
of Dolph [1]. He determined the line-source array excitation
coefficients for minimum beamwidth with all sidelobes at a given
level. He related these coefficients to the Chebyshev polynomials.
" van der Maas [2], [7], in attempting to simplify the caleu-
lation of a Dolph—Chebyshev array of many elements, discovered,
by a limiting process, the excitation function for a continuous line
aperture which has minimum beamwidth for a given sidelobe level.
Fig. 1(a) shows this excitation and the corresponding pattern
function: I;(y) is a modified Bessel function of the first kind and
of order one. It is noted that, because an impulse is required at
each edge, the excitation is unrealizable. (Campbell [6] published
this Fourier-transform pair in 1928.)

Taylor [3], restricting himself to excitations which are analytic
everywhere between the edges of a continuous aperture, modified
the pattern function to give sidelobes tapering down beyond a
specified number 7. Hansen [4] subsequently concluded that the
proper selection of % for the Taylor excitations gives the highest

Manuscript received November 24, 1969; revised December 9, 1970.

1 The term ‘‘sidelobe level’” is used in the accepted sense, meaning
the level not to be exceeded by any of the sidelobes. In the Dolph~
lO%ebs'shev and van der Maas formulation, this is the level of all side-
obes.
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Fig. 1. Excitation and pattern functions for minimum beamwidth and

maximum aperture efficiency. (a) van der Maas limit funections.
(b) Proposed (Wheeler) excitation.

AE for a given sidelobe level when compared with other excitations
known to him. Also, Kinsey [ 5] recently noted that, for practical
purposes, the selected Taylor excitations are as good as can be
achieved. :

ITI. PrROPOSED EXCITATIONS

Wheeler, in private disecussions with the author and in his notes
some years ago [107], has described a different approach to the
problem, which builds on the peculiarities of the excitation function.
He proposes a unique modification of the van der Maas limit func-
tion, which is not restricted to analytic functions everywhere
between the edges. Fig. 1(b) shows the basic concept. The area of
the impulse at each edge is retained but is redistributed, as shown,
so that the following results occur.

1) The sidelobes do not exceed the same level, and the outer
sidelobes taper down to take less power.

2) The shape of the main beam is approximately preserved by
also retaining the second moment of each edge pulse around the
aperture center. This is accomplished by loecating the ‘“‘center of
gravity” of the shaded area at the end of the curve. (For a narrow
pulse, a number of higher order moments are approximately retained,
so the near sidelobes are approximately preserved.)

3) The maximum aperture efficiency is approached by setting the
height of the pulse near the average of the curve. (It is reasoned
that this pulseheight should approach maximum efficiency, because
any departure from the average excitation increases the total power
without increasing the useful power density in the beam direction.)

In Fig. 1(b) it is noted that the redistributed area extends out-
side of the initial aperture. Renormalization of the aperture width
results in a beamwidth slightly greater than the van der Maas
minimum beamwidth. This is simply the expected tradeoff be-
tween the minimum beamwidth and maximum AE, corresponding
to the choice of # in Taylor’s distribution. Fig. 2 shows the proposed
family of excitations, normalized to the same aperture width.
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Fig. 2. Proposed excitation family for maximum aperture efficiency
with given sidelobe level.
TABLE I
CHARACTERISTICS OF VAN DER Maas Livit FuncTIiOoNs
r=SIDELOBE LEVEL (VOLTAGE RATIO}
SIDELOBE LEVEL -dB OF r
15 20 25 30 35 40
b = anticosh (1/r)
2.412 2.993 3.571 4.147 4.723 5.298
x) I, (b+y/I-x2)
X filx} s —/—//—m}mm—
CTOVISE Lo
0.1 .9940 9915 0889 .9862 .8835 .9807
Q.2 .9763 .9665 .9562 .9458 .9352 9247
0.3 9473 .9257 .9036 .8813 .8591 .8372
0.4 9077 .8709 .8337 7969 7610 . 7263
0.5 .8586 .8040 .7500 .6978 .6482 .6015
0.6 8012 .7275 .6564 .5899 .5288 L4732
0.7 7369 .6440 .5574 4794 41086 .3507
0.8 6673 .5565 .4574 3721 .3006 .2417
0.9 5942 4679 .3603 2729 .2043 15186
1.0 .5190 .3809 .2699 .1859 1252 .0827
AVERAGE VALUE OF f,(x)= 20—}
(AT
.8250 .7654 7104 .6620 .6200 .5833
i
IMPULSE FUNCTION AREA = _—_b[,(b)
17842 |.08502 | .04234 | .o2i62 |.011224 |[.005893

Table I presents a tabulation of the van der Maas excitation
functions and the average value of the continuous part of the
excitations, which is the pulseheight in the proposed excitations.

The proposed excitations have been evaluated by numerical
methods. The expression defining AE as a ratio of integrals was
evaluated as a ratio of sums. The height of the pulse was set to
the average value of the curve as given in Table I, and the center
of gravity of the pulse was located at the position of the van der
Maas impulse. The results of these simple calculations are given in
the next section. Additional calculations have shown that a slight
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Fig. 3. Comparisons of two forms of excitation intended for maximum
aperture efficiency with 30-dB sidelobe level,
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Fig. 4. Aperture efficiency versus sidelobe level for Wheeler, Taylor,

and cosine squared on pedestal excitations.

advantage is obtained by choosing the pulseheight somewhat below
the average and sloping the pulse top downward from the edge of
the aperture.

Fig. 3 shows a comparison of the excitation obtained by Kinsey
[5] for his highest AE with a 30-dB sidelobe level and the one
proposed by Wheeler for the same sidelobe level. The similarity
over most of the aperture is remarkable, considering the laborious
computations required by one in contrast to the simple computation
of the other.

1V. Comparisox oF ExcrTatioNs. AND CONCLUSIONS

Fig. 4 presents the values of aperture efficiency calculated for
several sidelobe levels for the Wheeler excitations. The values
presented are for the simple formula previously prescribed and do
not include the slight advantage of a lower pulseheight and tilted
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top. For comparison, two other well-known excitations are included.
The values for the Taylor excitations (7 set for maximum aperture
efficiency) were obtained from [3] and [5]. The “cosine squared
on a pedestal’” excitations are simple and give efficiency within
6 percent of the maximum for sidelobe levels down to 40 dB [9]

As shown in Fig. 4, the Taylor and Wheeler exeitations provide,
within the accuracy of the calculations and plotting, equal aperture
efficiencies. The practical distinctions between these two functions
are in their deseription and ease of calculation. The 7 values for
the Taylor functions had to be determined numerically and have
no simple rule for approaching maximum aperture efficiency. The
calculation of the Taylor excitation curve involves a summation of
7 4 1 terms; the Wheeler excitation curve is given by one term
plus the edge pulse.

There remains to be uniquely determined the excitation which
will give the maximum aperture efficiency for a given sidelobe
level. The formula proposed herein is close enough for practical
purposes and is the simplest yet stated. It departs from the arti-
ficial restriction of continuity everywhere between the edges, and
this freedom may be found essential to the ultimate formulation.
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Singular Integral Equation Solution for Electrically
Small Short Cylindrical Antenna

Abstract—It is shown, that in the case of the electrically small
tubular cylindrical antenna whose length-to-radius ratio is 0(1)
or smaller, that the integral equation involved readily reduces to
a simple singular equation, the solution of which is in terms of
elementary functions.
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I. INTRODUCTION

When Maxwell’s equations are applied to the ease of a thin
walled tubular perfectly conducting eylindrical antenna, one result
is an integral equation for the current. It can be shown [1] that
the integral equation for the total current on the tube is

I

where 2h is the antenna length, k¢ = w(uoeo)’?, and time variation
is exp (fwt). F(2) represents the z component of the total applied
electrie field on the surface of the antenna.

In the past, almost all solutions of (1) have dealt with the situa-
tion, a K N\, & > a. In this case, the logarithmically singular be-
havior of the kernel Go(z) as | 2| — 0 is not important, unless fine
detail of the current is required near the ends of the antenna or at
concentrated sources on the surface of the antenna. If the other
extreme where @ >> k is considered, however, it is found that the
logarithmic singularity is the dominant feature of Go(2). It is natural,
therefore, that the well-developed theory of singular integral equa-
tions [2], [3] should be invoked in this case. The result is that when
h < a < A, an accurate closed-form solution of the integral equation
can be obtained. Equally important, however, is the fact that this
result is the principal part of the solution for thick antennas where
a >> h and a/A is large.

Applications of this work may be found in the design of small
field probes where accurate and simple solutions are required;
in the analysis of thick antennas; in the determination of the
electric field close to edges and feed apertures to facilitate studies
of microwave breakdown, and in graduate teaching courses where
it is desired to display the nature of the current distribution at
edges and sources in a simple and elegant manner. One case where
the theory has been applied successfully is in the design of a minia-
ture probe for measuring differential and transient soil moisture
content.

Thus this communication introduces singular integral equation
theory to the solution of the cylindrical antenna problem for those
cases where the antenna length is short compared with its radius.

Jaren _‘jao(z = &) + kAl (@)Golz — z’)} = F@,

1dz
[z <h (1)

II. SoruTrox FOR CONCENTRATED SOURCE

Let the antenna excitation be defined by

E.(a + 0,2) —8(2), lz] <h (2a)

I

E.a — 0,2) =0, lz] < h. (2b)

I

with the corresponding physical model as shown in Fig. 1(a) and the
mathematical abstraction as shown in Fig. 1(b). Note that the
delta-function excitation has to be understood as part of a mathe-
matieal process whereby the finite aperture problem may be solved.
Now the right-hand side of (1) becomes

27i6(z) = 2mtkoa 6Gy
= — —_— 3
F(2) Z: Zo 9 | @)

Making the substitutions
kol = H (4a)
kor = A (4b)
z = ht (4c)
h
— = 4d
32 E (4d)
dI(@)

t —_ de
-10] % (4e)



